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The free vibrations of structures coupled with heavy and inviscid fluids are studied
considering that there is no cavitation at the interface. Different formulations of the
Rayleigh quotient for structures coupled to compressible and incompressible fluids are
obtained either considering or neglecting the free surface waves. The Rayleigh—Ritz
method is also introduced. It gives a linear eigenvalue problem for an incompressible
liquid when the free surface waves are neglected. When the free surface waves are
considered, the eigenvalue problem is generally nonlinear both for incompressible and
compressible fluids; however, this study proves that a linear eigenvalue problem may be
obtained for incompressible fluids and free surface waves included by solving a problem of
larger dimension. When the solid coupled with the fluid is a structure modeled with simple
components (substructures), it is useful to use the artificial spring method to synthesise
substructures. However, this method was never applied to liquid—structure systems before
the present study. It was observed that all the substructures in contact with the same fluid
volume are not only coupled by the joints, but also by the fluid. An application of the
method to a storage tank partially filled with water is also presented.

© 1997 Academic Press Limited

1. INTRODUCTION

THE STUDY OF STRUCTURAL VIBRATIONS has largely been expanded in recent years as a
consequence of (i) increased performance requirements and (ii) the development of
more powerful and versatile computers. Research into new approaches to the analysis
of complex structures has led to the development of the finite element method (FEM).
At the same time, other methods of analysis were also developed. Perhaps the most
important class of methods, alternative to the FEM, considers the structure as an
assemblage of simple components that are synthesized by using different techniques.
The receptance method (Soedel 1993; Huang & Soedel 1993; Amabili 1996b), the
artificial spring method (Yuan & Dickinson 1992a,b, 1994; Cheng & Nicolas 1992;
Cheng 1994, 1996; Missaoui et al. 1996; Amabili 1997), the component mode
substitution (Meirovitch 1980) and the transfer matrix method (Yamada et al. 1986)
belong to this class. However, all these methods were originally developed to study
vibration in a vacuum.

A powerful, analytical-numerical technique to study quite simple fluid—structure
systems is the Rayleigh—Ritz method. It was introduced in a paper by Zhu (1995),
and further elucidated by Amabili (1996c). This method is based on the Rayleigh
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quotient for vibrations of structures coupled to fluids, treated by Zhu (1994). The first
part of the present study manipulates the results of Zhu in order to obtain simpler
expressions that are more suitable for applications; thus, significant new work is
presented for dealing with incompressible fluids.

The Rayleigh—Ritz method is not very efficient in studying structures modeled with
more than one component. Thus, when the solid coupled with the fluid is a structure
obtained by connecting simple components (substructures), it is a good approach to use
a method for synthesizing the substructures. A particularly suitable approach for this
purpose is the use of artificial springs, simulating the junctions between the substruc-
tures, in the application of the Rayleigh—Ritz method for coupled fluid-structure
systems. In the past this method was only used to study structures in a vacuum or a
plate-shell system coupled to a resonant cavity (Cheng 1994, 1996). Recently (Amabili
1997), it was applied to model a tank with a flexible bottom resting on a Winkler
foundation, partially filled with incompressible liquid, neglecting the free surface waves.

The novelty of the present paper is the generalization of the method applied in the
paper of Amabili (1997) to various structures loaded by compressible or incompressible
fluids. The fluid can be simulated by neglecting the free surface waves or considering
them. Moreover, we show that all the substructures in contact with the same fluid
volume are not only coupled by joints but also by the fluid itself. A method to evaluate
the coupling energy of the fluid is given.

More specifically, the proposed method gives a linear eigenvalue problem for an
incompressible liquid when free surface waves are neglected. In this case, the liquid
motion is generated by the vibration of the structure in contact with the liquid and it
results in a discernible increase in the kinetic energy of the entire system. In cases when
free surface waves and compressible fluids are considered, a nonlinear eigenvalue
problem is obtained. This study proves that a linear eigenvalue problem can be
obtained for incompressible fluids by increasing the dimension of the mass and stiffness
matrices of the system.

In order to verify the potential of the method, we present an application of the
technique involving a storage tank filled with an inviscid and incompressible liquid
(water) having a free surface normal to the tank axis; this is the application presented
in the paper of Amabili (1997), but different results are given. The tank is modeled
with a simply supported circular cylindrical shell connected to a simply supported
circular plate by an artificial distributed rotational spring of appropriate stiffness.

2. THE RAYLEIGH QUOTIENTS FOR COUPLED FLUID-STRUCTURE
SYSTEMS

Undamped normal modes of a thin-walled elastic structure (e.g. a plate or shell) are
considered; the equation of motion for this structure, see Figure 1, can be written as

N(u) = w’p,hku, (1)

where N is a differential operator, u is the displacement vector of the mean surface of
the structure that gives the mode shape, w is the corresponding circular frequency, ps is
the mass density of the material, £ is the thickness and k is a parameter which depends
on the geometry of the structure. For a shell with a double curvature, k = A; A,, where
A, and A, are the radii of the principal curvatures; while for a circular plate, k = 1.
For an inviscid, compressible fluid that has an irrotational movement only due to the
structural vibration (resting fluid), the deformation potential @ (not depending on
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g
u
Figure 1. Shell partially in contact with a fluid.
time ¢) satisfies the Helmholtz equation
V2 = —wc 2, ©)

where c is the velocity of sound in the fluid. The velocity potential ® is related to @ by
® = iwPe. If the fluid is incompressible, @ satisfies the Laplace equation

V2P =0. 3)

At the fluid-structure interface S,, the fluid velocity and the wall velocity must be
equal; this is the condition of contact between an impermeable wall and a fluid when
there is no cavitation at the interface. Therefore, we have

ad)/an =u-n on S, (4)

where n is the unit vector normal to the wall surface and whose positive direction 7 is
outwards in the fluid domain. When the fluid is in contact with a rigid surface S,, we
obtain

0d/on =0 on §,. 5)

When free surface waves are considered, we have the linearized condition at the fluid
free surface Sy (Zhu 1994; Morand & Ohayon 1992)

g(d®/on) = 0’®  on S, (6)

where g is the gravity acceleration and n is the direction orthogonal to the free surface
with positive direction outside the fluid volume. When the free surface waves are
neglected we impose zero dynamic pressure on Sy (Zhu 1994; Morand & Ohayon 1992);

D=0 on S, 7

For an unbounded fluid we must impose the radiation condition, i.e. the deformation
potential @ and the velocities of the liquid reach zero when the distance from the solid
becomes very large. In fact we require that the velocity of the liquid vanishes at large
distances from the structure in such a way that the kinetic energy of the liquid remains
finite.

By using the orthogonality relations of wet modes obtained by Huang (1991) and
Zhu (1991), we can obtain the Rayleigh quotient for coupled fluid—structure vibrations.
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For a compressible fluid and considering the free surface waves, the Rayleigh quotient
is given by (Zhu 1994)

aDad o
k” N(u)ds+ng”——ds+ch ”quwqﬁdv
1%

on on
W’ = ) (8)

pshffu-uds+prffv¢>-v<pdv
Q 14

where Q is the mean surface of the structure, V the fluid volume and py is the fluid
mass density. It is useful to give a mechanical meaning to all the terms of the quotient
of equation (8). The numerator gives twice the maximum potential energy of the
system; in particular, the first term gives twice the elastic energy of the structure, the
second term refers to the free surface waves of the fluid, and the third term gives twice
the potential energy stored by the compressible fluid. The denominator of equation (8)
expresses twice the reference kinetic energy (maximum kinetic energy divided by w?)
of the system; the first term refers to the structure and the second to the fluid. When
the fluid can be considered incompressible, equation (8) becomes (Zhu 1994)

o2
k " . pr§ on on
Ve fo) s
pshjfu-udS+pf«fffV@-V®dV
fo) v

Moreover, since in this case the function @ is harmonic (in fact it satisfies the Laplace
equation (3) when the fluid is incompressible), the expression which gives the reference
kinetic energy of the fluid T,

)

T%=1p, “Jw-v«pdv, (10)
|4

can be simplified into (Amabili 1995)

=1pr ” @—ds—zpF(” cp—ds+”¢—ds> (11)

where By is the boundary of the 51mply-connected fluid domaln V. Using equation (5),
relation (11) is obtained when the boundary B, of the fluid volume V is given by
So+ S+ S,. The simplification given in equation (11) is a consequence of the
application of the Green’s theorem to the harmonic function @ (Lamb 1945). It is also
useful to use equation (6) in order to simplify the following expression:

Prg Jfaf(pdf(pdS Prw ffcpde (12)

By using equations (11) and (12), the Rayleigh quotient can be written as

ij *N(u) dS
pshJJu udS+prf¢>de

(13)
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Expression (13) is clearly preferable to equation (9) in applications. Equation (13) is
formally unchanged in the case where free surface waves are neglected. Then it is

possible to write
1
p f f u-N(u)dS
Q

0’ = (14)

pshffu-udS+prf(I)u'ndS
Q

So

where the following further simplification was used

Ti=1pp ff &u -n ds. (15)
So

It is useful to recall that liquid-filled systems have two families of nodes: the sloshing
and the bulging ones (Gupta & Hutchinson 1988). Sloshing modes are caused by the
oscillation of the liquid free surface due to the rigid body movement of the container;
these modes are also affected by the flexibility of the system. In contrast, the bulging
modes are those in which the amplitude of the wall displacement predominates over
that of the free surface; in this case, the tank walls and base oscillate with the liquid.
Only bulging modes can be studied neglecting free surface waves.

Obviously we must know the mode shape u or we must give u a priori in order to use
equations (8), (13) and (14). The accuracy of the method depends on the accuracy of
the choice of the wet mode shapes. In some problems it was proved that the choice of
wet mode shapes equal to dry mode shapes gives quite good accuracy. Experiments
and discussion on this aspect can be found, for example, in the work of Amabili et al.
(1995), Amabili & Kwak (1996), Amabili et al. (1996) and Amabili (1996a).

3. THE RAYLEIGH-RITZ METHOD FOR COUPLED FLUID-STRUCTURE
SYSTEMS

A more accurate solution is obtained by using the Rayleigh—Ritz method (Zhu 1995;
Amabili 1996¢). The mode shape u is no longer given a priori, but it is expanded in a
series by using a finite number of admissible functions x;, i =1, ..., m, and appropriate
unknown coefficients g;:

u=> gx,. (16)
i=1

The coefficients ¢; are computed by the eigenvalue problem that is obtained minimizing
the Rayleigh quotient, given by equation (8), with respect to the coefficients ¢;. As a
consequence of the inclusion principle, the computed eigenvalues approach the actual
circular frequencies asymptotically and from above, while the number m of terms
considered in the series increases; at the same time the corresponding eigenvectors
approach the actual mode shapes.

The deformation potential of the fluid @ is also described by the eigenvectors, but
using the appropriate functions ¢;:

b= ; q:b; (17)

The functions ¢; are unequivocally obtained by the corresponding trial functions x; and
must satisfy both the Helmholtz equation V?¢; = —w’c ?¢; and the boundary
conditions on the free surface S; of the liquid g d¢;/on = ’¢;, at the liquid-structure
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interface 9¢;/dn =x; * n, and all the other conditions imposed at the fluid boundary. It
is clear that both the Helmholtz equation and the free surface condition, when free
surface waves are considered, are dependent on the circular frequency w of the system,
which is unknown before the solution of the eigenvalue problem is obtained.
Substituting equations (16) and (17) into the Rayleigh quotients, equations (8), (13)
and (14), and then minimizing with respect to the coefficients g;, we obtain

M

Il
N

(Kj — w?Ey)q; =0, i=1...,m, (18)

]

where [K;] and [E,;] are the stiffness and mass matrices, respectively, and w, is the
estimated rth circular frequency of the system. We see that in the Rayleigh quotients
we must insert an expression of @ dependent from w, and therefore both the matrices
[K;] and [E;] in equation (18) depend on the circular frequency of the system. The
solution of the problem is therefore obtained as a nonlinear eigenvalue problem that
must be solved by an iterative algorithm. It could be possible to start the iteration from
some assumed values of w; these values can first be computed, for example, by
considering the solution of the problem of an incompressible liquid and neglecting the
free surface waves (when we are interested in bulging modes). In fact, in this case, both
the fluid deformation potential and boundary conditions are independent of w, and a
linear eigenvalue problem is obtained. In other cases it is useful to start from a very
low circular frequency, lower than that of the fundamental mode of sloshing of the fluid
considering the structure as rigid. The nonlinear eigenvalue problem can be written as
(Schramm & Pilkey 1995)

[Ky(@07)] = &7 " V[Ey(07)] = 0, (19)

where w?® is the computed rth eigenvalue at step s. This means that for each
eigenvalue w? a sequence of linear eigenvalue problems must be solved.

3.1. OVERCOMING THE NONLINEAR EIGENVALUE PROBLEM

When the fluid is incompressible but the free surface waves are retained in the study, it
is possible to overcome the nonlinear eigenvalue problem. In fact, the dimension of the
problem can be increased utilizing more variables, and a linear eigenvalue problem can
be obtained. By using the principle of superposition it is possible to write

D=Py + Dy = E q;ds+ E hid)S,; (20)
i=1 i=1

where ¢5 and ¢ satisfy the Laplace equation. In particular, the sum @g is the
deformation potential obtained neglecting free surface waves, and each term ¢ must
satisfy the following boundary conditions:

¢ =0 onS; and d¢g/dn=x;-n on S,. (21a,b)

In particular the coefficients ¢, in equation (20) are the same as in the Ritz expansion of
the mode shape, equation (17). Then the sum @ is the deformation potential due to
sloshing, and each term ¢ must satisfy the condition

a(bsi/an = 0 on S(). (22)
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Moreover, the deformation potential must verify the free surface condition

P & s, &, s, &

g—=w’® onS, ie. g[E qiﬂ +> hiﬂ] =w®) hi¢s onS. (23)
0z -1 0z o 0z i=1 '

Equation (23) can be inserted in the eigenvalue problem by increasing its dimension

from m X m to (m +m) X (m + m). Therefore the following linear Galerkin equation is

obtained
R R i K
where 9" ={q,...,q, and W' ={h, ... h;} (24b,c)

In equation (24) the stiffness matrix [K] and the mass matrix [M] are due to the
structure, and the matrix [M,] is the added mass matrix due to the kinetic energy of the
fluid neglecting the free surface waves, i.e. (T§)nowave = 20r J[s, Psu - ndS; all these
matrices have dimension m X m. It is noted that the matrix [E] in equations (18, 19) is
given by the sum [M] + [M,], while [K] is obviously the same. The matrix [M] is the
added mass matrix associated with the reference kinetic energy due to the sloshing of
the fluid; this energy is given by

(Tj’f‘)sloshing = % PF fj @S u-ndSs. (25)
So
Matrices [K;], [K,] and [M;] are due to the vectorial form of equation (23) that is
added to the original problem.

It is also interesting to note that, in many problems, the eigenvectors of the in vacuo
problem can be used as trial functions x; in the mode shape expansion; this simplifies
the computation of the maximum potential energy of the structure, i.e. the first integral
in the numerator of equation (8). This energy can be obtained by multiplying the
reference kinetic energy of each eigenvector of the in vacuo problem by the
corresponding eigenvalue w7 (the squared circular frequency) of the same problem and
by the coefficient g;, and then adding all the products (Amabili et al. 1996; Amabili
1996a); i.e.

1
%ff x; - N(x;) dS = w?psh ff X; - X; dS, (26)
Q Q
and then
1 m
%J u-N(u) dS = psh >, w’q? JJ x; * X; dS. (27)
o) i=1 Q

In equation (27) we have used the orthogonality of the eigenvectors of the in vacuo
problem.

4. SUBSTRUCTURE SYNTHESIS

The analysis of a complex structure can be simplified if it is made up of quite simple
components (substructures) joined together. In fact, in that case, it is possible to use
the knowledge of the dynamic behavior of the substructures to study the whole
structure. In particular, the choice of trial functions of each component is simpler than
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the choice of global trial functions, and equation (27) can be used to evaluate the
potential energy of each component. A powerful method to synthesize simple
components and study a structure is the artificial spring method.

4.1. THE ARTIFICIAL SPRING METHOD

The artificial spring method is a modification of the classical Rayleigh—Ritz method to
synthesize components simplifying the choice of trial functions; it can be attributed to
Yuan & Dickinson (1992a) and Cheng & Nicolas (1992).

The Rayleigh—Ritz method was proved to be very efficient in studying complex
structures, but in order to obtain correct results the trial functions must satisfy all the
geometrical boundary conditions. Even if the extended Rayleigh—Ritz method (Petyt
1971) is utilized, trial functions must satisty geometrical boundary conditions of the
unconstrained structure, and the sum of the series of functions must satisfy the
additional constraints. When the Rayleigh—Ritz method is applied to a structure
obtained by joining some components together, the boundary conditions require the
continuity of translational and rotational displacements between all the rigid junctions
of the substructures. This condition gives many problems in the choice of the correct
trial functions to use for each single component. The use of artificial springs at the
junctions allows us to overcome this difficulty. In particular, the joints between the
components of the structure are substituted by translational and rotational artificial
springs (see Figure 2) that are distributed along the whole joint length or area.
Obviously, each degree of freedom involved in the joint must be simulated by a
distributed spring. Then the spring stiffness is chosen to be very high with respect to the
structure stiffness, to simulate a rigid junction in numerical computations. The
maximum potential energy V stored by the artificial springs simulating the joint j of
the structure can be written as

1
VS/_ = 5 f k;6; dl, (28)
lj

where k; is the stiffness of the translational or rotational artificial springs, &; is the
relative displacement or rotation between the two components involved in the joint,
and /; is the length or area of the joint j. The total potential energy stored by the
artificial springs is obviously the sum of the energies stored in all the joints of the
structure, and the double of this energy is included in the numerator of the Rayleigh
quotient when the artificial spring method is applied.

The potential energy stored by the springs replaces the continuity condition required

@, ®,

Original structure Structure synthesized
by using artificial
springs

Figure 2. Schematic representation of substructure synthesis.
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by the classical Rayleigh—Ritz method if the artificial springs are not introduced.
Therefore, the choice of the trial functions is simplified; in particular, one must choose
trial functions that allow displacement and rotation of all the springs involved in the
junctions and that satisfy the geometrical boundary conditions at the non-connected
regions.

4.2. CouprLING DUE 1O THE FLUID

In Section 4.1 we have described a method for simplifying the analysis of a structure
through a technique for synthesizing the components. Now we propose the application
of the Rayleigh—Ritz method for coupled fluid—structure systems in the case of
substructuring, and in particular by using the artificial spring method.

Let us consider a structure that we choose to divide into / components in the study;
we assume that the first p components of the structure are in contact with the simply
connected volume V, filled with an incompressible and inviscid fluid. The surface S,
wetted by the fluid is given by the sum of the contributions of each component;
therefore, So=5,+S,+...+S,, where S; is the wet surface of component j. The
vibration displacement of each component of the structure is w;, j =1, ..., L By using
the admissible functions x;, i =1, ..., m, of the component j we can write

s

Il
—_

qiiXij, (29)

1

where uw; and x; are defined in the component j. We associate with any admissible
function x;; the corresponding component ¢, of the deformation potential of the fluid,
defined in the whole fluid volume V. Each function ¢; must satisfy the Laplace
equation and all the boundary conditions; in this case the conditions of contact are:
d¢;/on =x;-m on S; and 9¢;/dn =0 on S, — S;. Therefore ¢; is associated with x;;,
considering the structure flexible in S; and rigid otherwise. The deformation potential ¢
is given by

p
o= E @, (30)
j=1

where @; is the contribution to @ given by the vibration of the component j. Therefore,
we have

b, = 21 qijbij- (31)
The reference kinetic energy of the fluid, equation (15), is now given by

P
> ®u,-ndS. (32)

Examining equation (32), we see that there are non-zero contributions also when i #j.
In conclusion, there is a dynamic coupling, due to the fluid, among the components of
the structure that are in contact with the same fluid volume, and not only junctions in
the structure. Similar relationships are obtained when studying a compressible fluid
while retaining the possibility of free surface waves.
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5. APPLICATION TO A PLATE-ENDED CIRCULAR CYLINDRICAL TANK

The proposed method is applied to the study of a storage tank filled with an inviscid
and incompressible liquid (water) having a free surface normal to the tank axis.

The tank is modeled by a simply supported circular cylindrical shell connected to a
simply supported circular plate by an artificial rotational distributed spring (Figure 3)
that is assumed to be very rigid. This model is quite realistic because the connection
between the plate and the shell gives a reciprocal constraint that can be assumed as a
simple support. In many applications the top of the tank is closed by a thin diaphragm
or by a ring that constrains the shell displacements similarly to a simple support; only
for the purposes of describing correctly beam-like modes of the tank should a free edge
be considered as the top.

When a plate is joined to a circular cylindrical shell, in general three displacements
and two slope connections could be considered, according to classical thin-shell theory.
However, the full treatment of using five connections is not necessary if one
investigates only lower modes of the system. For these modes the plate can be assumed
inelastic in its plane, and hence to admit only transverse displacements. Moreover,
influences of connection deflections in the tangential planes of the shell can be
neglected with respect to transverse amplitudes. Therefore, only the radial slope at the
plate boundary can be considered coupled to the axial slope of the shell at the bottom
end.

In this application only the bulging modes of the structure are investigated and the
free surface waves are neglected; the solution is obtained as a linear eigenvalue
problem by using an artificial spring in conjunction with the Rayleigh—Ritz method.

A cylindrical polar co-ordinate system (O;r, 6, x) is introduced, with the origin O at
the center of the circular bottom plate. Due to the axial symmetry of the structure, only
the modes of the shell and the plate with the same number n of nodal diameters are
coupled. Both the axisymmetric vibrations (n =0) and asymmetric vibrations (n > 0)
can be investigated. Besides, it is interesting to note that, due to axial symmetry, for

- &

+—— Free surface

le—— Component 1:
Cylindrical shell

Component 2:
Circular plate

Figure 3. The model used to study the storage tank.
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each asymmetric mode there exists a second mode having the same frequency and
mode shape, but angularly rotated by 71/2n.

The Rayleigh—Ritz method is applied to find the natural modes of the circular
cylindrical tank of radius @ and height L. The radial displacement w of the shell wall
(Figure 3) can be given by the following expression (Amabili 1997):

Ny
w(x, 8) = cos(nb) >, q,B, sin(srr%) , (33)
s=1

where n is the number of nodal diameters, g are the Ritz coefficients, Bg are constants
depending on the normalization criterion used, and N, is the number of terms used in
the expansion. The eigenvectors of the empty simply supported shell are used as
admissible functions.

The transverse displacement, wp, of the plate can be given as

N, A A
w,(r, 8) = cos(n) >, q,-[AmJn< ,,,r) + CinIn< '"r>] , (34)
i=0 a a

where n and i are the number of nodal diameters and circles, respectively, a is the plate
radius, §; are the Ritz coefficients, and A,, is the frequency parameter that is related to
the natural frequency of the plate; J; and I, are the Bessel function and modified Bessel
function of order i, respectively, and N, is the number of terms used in the expansion.
The mode shapes with an even number n of nodal diameters are symmetric with
respect to the longitudinal axis, whereas those with an odd number n are antisymmet-
ric. Mathematical details are given in Amabili (1997).

The numerical solution to the eigenvalue problem is obtained by using the
Mathematica computer program (Wolfram 1991). Twelve shell modes and twelve plate
modes are considered in the Rayleigh—Ritz expansion. The study is addressed to tanks
partially filled with water, having p = 1000 kg m . In the case studied, both the shell

700
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Natural frequency (Hz)
%i

200

100cC

0 1 1 \\HH‘ 1 1 \\HH‘ 1 1 \\HH‘ 1 L LIl
0.1 10 10° 10° 10
Spring stiffness (N m/m)

Figure 4. Effect of the spring stiffness on the natural frequencies, in Hz, of the first four modes with four
nodal diameters; ((0) S1 = first shell-dominant mode; (<) S2 =second shell-dominant mode; (A) S3 = third
shell-dominant mode; (M) P1 = first plate-dominant mode.
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and the plate are assumed to be made of steel with the following material properties:
Young’s modulus E =206 X 10° Nm 2, mass density ps=7800kgm > and Poisson
ratio v=0-3. The dimensions are: radius a =0-175m, shell length L =0-6 m, shell
thickness Ag=1mm and plate thickness 4, =2mm. The plate and the shell are
considered coupled together by a spring with infinite stiffness at the joint. For infinity,
one in fact takes a large enough quantity in the calculations. In practice, one sometimes
considers a trial value of the spring stiffness and then changes it until one obtains
eigenvalues that are not affected by an increment in the stiffness value. However, one
can give directly a stiffness value much larger than the plate and shell edge stiffness. In
the present case the stiffness value of 10°N m/m of the rotational spring connecting
plate and shell was used to simulate an infinite stiffness in computations. The effect of
the spring stiffness on natural frequencies is shown in Figure 4.

The tank is considered to be completely filled with water to a level of H = 0-6 m. The
first four mode shapes having n =2 nodal diameters are given in Figure 5. Mode shapes
are plotted in the tank cross-section defined by 8 =0 and 8 = iz Obviously, for n =2
we have symmetric mode shapes in this section; the first (Figure 5a) and the third
(Figure 5c) modes are shell-dominant (shell displacement larger than plate displace-
ment); the second (Figure 5b) and fourth (Figure 5d) are plate-dominant. Therefore, it

210.8 Hz 309.1 Hz

(a) (b)

609.6 Hz 886.9 Hz

vV

(c) (d

Figure 5. First four modes having n = 2 nodal diameters and their natural frequencies. The corresponding
in vacuo natural frequencies are: (a) 719-9 Hz; (b) 576-1 Hz; (c) 1943-9 Hz; (d) 1400-4 Hz.
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134 Hz 435.1 Hz

(a) (b)

495.8 Hz 779.9 Hz

(e (d)

Figure 6. First four modes having n = 3 nodal diameters and their natural frequencies. The corresponding
in vacuo natural frequencies are: (a) 384-5 Hz; (b) 1208-8 Hz; (c) 839-7 Hz; (d) 2062-4 Hz.

is useful to introduce the symbols S1 and S2 to indicate the first and second
shell-dominant modes; similarly, P1 and P2 are used for the first and second
plate-dominant modes. In the figure are reported also the natural frequencies. The
natural frequencies of the corresponding modes in vacuum are given in the caption in
order to evaluate the effect of water; obviously, mode shapes are also changed by the
presence of water inside the tank. The first four mode shapes having n =3 nodal
diameters are presented in Figure 6, while those having n = 4 are given in Figure 7; for
n =3 we have antisymmetric mode shapes in the cross-section with coordinates 6 =0
and 6=, while for n =4 we have symmetric shapes. Natural frequencies of modes
with n =4 nodal diameters are plotted in Figure 8 for different thicknesses of the
bottom plate (all the other dimensions are unchanged). Plate-dominant modes are
obviously largely affected by the increasing thickness.

Table 1 shows the convergence of the natural frequencies when the number of terms
in the expansion is increased. It is interesting to see that the plate-dominant modes
display a slower convergence rate in this case. In contrast, very few terms are necessary
to assure a good estimation of shell-dominant modes.

Lastly, in order to check the accuracy of the artificial spring method, numerical
results obtained by using the present approach were compared to the data presented
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Figure 7. First four modes having n = 4 nodal diameters and their natural frequencies. The corresponding
in vacuo natural frequencies are: (a) 261-7 Hz; (b) 799-6 Hz; (c) 1477 Hz; (d) 1138-8 Hz.

by Huang & Soedel (1993) for an empty plate-ended circular cylindrical shell. Both the
shell and the plate are made of steel with the following material properties:
E =206 GPa, ps=ppr=7850m > and v=0-3. The dimensions are: a =0-1m, L=
0-2m, hs =hp =2 mm. The comparison is shown in Table 2 for modes having n =5
nodal diameters. A very good agreement between the circualr frequencies given by
Huang & Soedel (1993), obtained by using the receptance method, and the present
results were found.

6. CONCLUSIONS

The artificial spring method has many advantages in the study of quite complex
structures; in fact, admissible functions need not satisfy continuity conditions at the
junctions. It was shown that this technique is appropriate for the study of fluid—
structure interaction systems, also when the fluid has a free surface. The application to
a circular cylindrical tank with a vertical axis, composed of two substructures joined by
the relative rotation, tests the effectiveness of the method. Rigid junctions are
simulated by springs of infinite stiffness. For infinity, one in fact takes a large enough
quantity in the calculations.
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Figure 8. Natural frequencies of the mode shapes with n =4 nodal diameters versus thickness of the
bottom plate. (OJ) S1; (&) S2; (W) P1; (&) P2.

TaBLE 1

Natural frequencies [Hz] of the first five modes having n =4 nodal diameters of
the tank studied, obtained by using a different number N, =N, of terms in the
Rayleigh—Ritz expansions of w and wp

Natural frequency (Hz)

N, =N, Mode S1 Mode S2 Mode S3 Mode P1 Mode S4

2 104 3234 — 875 —
6 103 3223 608-6 7477 913-1
10 102-7 322 608-5 7172 910-7
14 102-5 321-8 608-5 695-8 909-4
TABLE 2

Circular frequencies [rad/s] of the plate-ended circular cylindrical shell studied in the
paper of Huang & Soedel (1993); modes with n =5 nodal diameters are considered

Huang
Present &

Mode study Soedel (1993) Difference (%)
First 9297 9293 0-4
Second 17 695 17 696 0-006
Third 26 296 25913 1-5
Fourth 28 674 28 328 1-2
Fifth 37225 37161 02

Sixth 45127 45158 0-07
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The Rayleigh—Ritz method applied together with artificial springs is modified in
order to obtain directly the fluid deformation potential, and is based on the Rayleigh
quotient for coupled fluid—structure systems; different expressions of the quotient are
given for various applications.

In the case when the effect of the free surface waves is retained in the study, the
problem can be reduced to a linear eigenvalue problem by increasing the dimension of
the stiffness and mass matrices.

Substructuring applied in conjunction with the Rayleigh—Ritz method and the
artificial spring technique is a powerful method for the study of quite complex
fluid—structure systems, as an alternative to the more computationally onerous finite
element method (FEM) and boundary element method (BEM); moreover, it can also
be used as a benchmark for commercial FEM and BEM codes.
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