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 RITZ METHOD AND SUBSTRUCTURING IN THE
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 The free vibrations of structures coupled with heavy and inviscid fluids are studied
 considering that there is no cavitation at the interface .  Dif ferent formulations of the
 Rayleigh quotient for structures coupled to compressible and incompressible fluids are
 obtained either considering or neglecting the free surface waves .  The Rayleigh – Ritz
 method is also introduced .  It gives a linear eigenvalue problem for an incompressible
 liquid when the free surface waves are neglected .  When the free surface waves are
 considered ,  the eigenvalue problem is generally nonlinear both for incompressible and
 compressible fluids ;  however ,  this study proves that a linear eigenvalue problem may be
 obtained for incompressible fluids and free surface waves included by solving a problem of
 larger dimension .  When the solid coupled with the fluid is a structure modeled with simple
 components (substructures) ,  it is useful to use the artificial spring method to synthesise
 substructures .  However ,  this method was never applied to liquid – structure systems before
 the present study .  It was observed that all the substructures in contact with the same fluid
 volume are not only coupled by the joints ,  but also by the fluid .  An application of the
 method to a storage tank partially filled with water is also presented .

 ÷   1997 Academic Press Limited

 1 .  INTRODUCTION

 T HE STUDY OF STRUCTURAL VIBRATIONS  has largely been expanded in recent years as a
 consequence of (i) increased performance requirements and (ii) the development of
 more powerful and versatile computers .  Research into new approaches to the analysis
 of complex structures has led to the development of the finite element method (FEM) .
 At the same time ,  other methods of analysis were also developed .  Perhaps the most
 important class of methods ,  alternative to the FEM ,  considers the structure as an
 assemblage of simple components that are synthesized by using dif ferent techniques .
 The receptance method (Soedel 1993 ;  Huang & Soedel 1993 ;  Amabili 1996b) ,  the
 artificial spring method (Yuan & Dickinson 1992a , b ,  1994 ;  Cheng & Nicolas 1992 ;
 Cheng 1994 ,  1996 ;  Missaoui  et al .  1996 ;  Amabili 1997) ,  the component mode
 substitution (Meirovitch 1980) and the transfer matrix method (Yamada  et al .  1986)
 belong to this class .  However ,  all these methods were originally developed to study
 vibration in a vacuum .

 A powerful ,  analytical-numerical technique to study quite simple fluid – structure
 systems is the Rayleigh – Ritz method .  It was introduced in a paper by Zhu (1995) ,
 and further elucidated by Amabili (1996c) .  This method is based on the Rayleigh
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 quotient for vibrations of structures coupled to fluids ,  treated by Zhu (1994) .  The first
 part of the present study manipulates the results of Zhu in order to obtain simpler
 expressions that are more suitable for applications ;  thus ,  significant new work is
 presented for dealing with incompressible fluids .

 The Rayleigh – Ritz method is not very ef ficient in studying structures modeled with
 more than one component .  Thus ,  when the solid coupled with the fluid is a structure
 obtained by connecting simple components (substructures) ,  it is a good approach to use
 a method for synthesizing the substructures .  A particularly suitable approach for this
 purpose is the use of artificial springs ,  simulating the junctions between the substruc-
 tures ,  in the application of the Rayleigh – Ritz method for coupled fluid – structure
 systems .  In the past this method was only used to study structures in a vacuum or a
 plate-shell system coupled to a resonant cavity (Cheng 1994 ,  1996) .  Recently (Amabili
 1997) ,  it was applied to model a tank with a flexible bottom resting on a Winkler
 foundation ,  partially filled with incompressible liquid ,  neglecting the free surface waves .

 The novelty of the present paper is the generalization of the method applied in the
 paper of Amabili (1997) to various structures loaded by compressible or incompressible
 fluids .  The fluid can be simulated by neglecting the free surface waves or considering
 them .  Moreover ,  we show that all the substructures in contact with the same fluid
 volume are not only coupled by joints but also by the fluid itself .  A method to evaluate
 the coupling energy of the fluid is given .

 More specifically ,  the proposed method gives a linear eigenvalue problem for an
 incompressible liquid when free surface waves are neglected .  In this case ,  the liquid
 motion is generated by the vibration of the structure in contact with the liquid and it
 results in a discernible increase in the kinetic energy of the entire system .  In cases when
 free surface waves and compressible fluids are considered ,  a nonlinear eigenvalue
 problem is obtained .  This study proves that a linear eigenvalue problem can be
 obtained for incompressible fluids by increasing the dimension of the mass and stif fness
 matrices of the system .

 In order to verify the potential of the method ,  we present an application of the
 technique involving a storage tank filled with an inviscid and incompressible liquid
 (water) having a free surface normal to the tank axis ;  this is the application presented
 in the paper of Amabili (1997) ,  but dif ferent results are given .  The tank is modeled
 with a simply supported circular cylindrical shell connected to a simply supported
 circular plate by an artificial distributed rotational spring of appropriate stif fness .

 2 .  THE RAYLEIGH QUOTIENTS FOR COUPLED FLUID – STRUCTURE
 SYSTEMS

 Undamped normal modes of a thin-walled elastic structure (e . g .  a plate or shell) are
 considered ;  the equation of motion for this structure ,  see Figure 1 ,  can be written as

 N ( u )  5  v  2 r s hk u ,  (1)

 where  N  is a dif ferential operator ,   u  is the displacement vector of the mean surface of
 the structure that gives the mode shape ,   v   is the corresponding circular frequency ,   r S   is
 the mass density of the material ,   h  is the thickness and  k  is a parameter which depends
 on the geometry of the structure .  For a shell with a double curvature ,   k  5  A 1 A 2  ,  where
 A 1   and  A 2  are the radii of the principal curvatures ;  while for a circular plate ,   k  5  1 .

 For an inviscid ,  compressible fluid that has an irrotational movement only due to the
 structural vibration (resting fluid) ,  the deformation potential  F   (not depending on
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 Figure 1 .  Shell partially in contact with a fluid .

 time  t ) satisfies the Helmholtz equation

 = 2 F  5  2 v  2 c 2 2 F ,  (2)

 where  c  is the velocity of sound in the fluid .  The velocity potential  F ̃   is related to  F   by
 F ̃  5  i v F e i v t .  If the fluid is incompressible ,   F   satisfies the Laplace equation

 = 2 F  5  0 .  (3)

 At the fluid-structure interface  S 0  ,  the fluid velocity and the wall velocity must be
 equal ;  this is the condition of contact between an impermeable wall and a fluid when
 there is no cavitation at the interface .  Therefore ,  we have

 Û F  / Û n  5  u  ?  n  on  S 0  ,  (4)

 where  n  is the unit vector normal to the wall surface and whose positive direction  n  is
 outwards in the fluid domain .  When the fluid is in contact with a rigid surface  S r  ,  we
 obtain

 Û F  / Û n  5  0  on  S r .  (5)

 When free surface waves are considered ,  we have the linearized condition at the fluid
 free surface  S f   (Zhu 1994 ;  Morand & Ohayon 1992)

 g ( Û F  / Û n )  5  v  2 F  on  S f  ,  (6)

 where  g  is the gravity acceleration and  n  is the direction orthogonal to the free surface
 with positive direction outside the fluid volume .  When the free surface waves are
 neglected we impose zero dynamic pressure on  S f   (Zhu 1994 ;  Morand & Ohayon 1992) ;

 F  5  0  on  S f  .  (7)

 For an unbounded fluid we must impose the radiation condition ,  i . e .  the deformation
 potential  F   and the velocities of the liquid reach zero when the distance from the solid
 becomes very large .  In fact we require that the velocity of the liquid vanishes at large
 distances from the structure in such a way that the kinetic energy of the liquid remains
 finite .

 By using the orthogonality relations of wet modes obtained by Huang (1991) and
 Zhu (1991) ,  we can obtain the Rayleigh quotient for coupled fluid – structure vibrations .
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 For a compressible fluid and considering the free surface waves ,  the Rayleigh quotient
 is given by (Zhu 1994)

 v  2  5

 1
 k
 E E
 Ω

 u  ?  N ( u )  d S  1  r F g  E E
 S f

 Û F

 Û n

 Û F

 Û n
 d S  1  r F c  2  E E E

 V

 = 2 F = 2 F  d V

 r S h  E E
 Ω

 u  ?  u  d S  1  r F  E E E
 V

 = F  ?  = F  d V

 ,  (8)

 where  Ω   is the mean surface of the structure ,   V  the fluid volume and  r F   is the fluid
 mass density .  It is useful to give a mechanical meaning to all the terms of the quotient
 of equation (8) .  The numerator gives twice the maximum potential energy of the
 system ;  in particular ,  the first term gives twice the elastic energy of the structure ,  the
 second term refers to the free surface waves of the fluid ,  and the third term gives twice
 the potential energy stored by the compressible fluid .  The denominator of equation (8)
 expresses twice the reference kinetic energy (maximum kinetic energy divided by  v  2 )
 of the system ;  the first term refers to the structure and the second to the fluid .  When
 the fluid can be considered incompressible ,  equation (8) becomes (Zhu 1994)

 v  2  5

 1
 k
 E E
 Ω

 u  ?  N ( u )  d S  1  r F g  E E
 S f

 Û F

 Û n

 Û F

 Û n
 d S

 r S h  E E
 Ω

 u  ?  u  d S  1  r F  E E E
 V

 = F  ?  = F  d V

 .  (9)

 Moreover ,  since in this case the function  F   is harmonic (in fact it satisfies the Laplace
 equation (3) when the fluid is incompressible) ,  the expression which gives the reference
 kinetic energy of the fluid  T  * F  ,

 T  * F  5  1 – 2 r F  E E E
 V

 = F  ?  = F  d V ,  (10)

 can be simplified into (Amabili 1995)

 T  * F  5  1 – 2 r F  E E
 B f

 F
 Û F

 Û n
 d S  5  1 – 2 r F S E E

 S F

 F
 Û F

 Û n
 d S  1 E E

 S 0

 F
 Û F

 Û n
 d S D ,  (11)

 where  B f   is the boundary of the simply-connected fluid domain  V .  Using equation (5) ,
 relation (11) is obtained when the boundary  B f   of the fluid volume  V  is given by
 S 0  1  S f  1  S r .  The simplification given in equation (11) is a consequence of the
 application of the Green’s theorem to the harmonic function  F   (Lamb 1945) .  It is also
 useful to use equation (6) in order to simplify the following expression :

 r F g  E E
 S f

 Û F

 Û n

 Û F

 Û n
 d S  5  r F v  2  E E

 S f

 F
 Û F

 Û n
 d S .  (12)

 By using equations (11) and (12) ,  the Rayleigh quotient can be written as

 v  2  5

 1
 k
 E E
 Ω

 u  ?  N ( u )  d S

 r S h  E E
 Ω

 u  ?  u  d S  1  r F  E E
 S 0

 F
 Û F

 Û n
 d S

 .  (13)
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 Expression (13) is clearly preferable to equation (9) in applications .  Equation (13) is
 formally unchanged in the case where free surface waves are neglected .  Then it is
 possible to write

 v  2  5

 1
 k
 E E
 Ω

 u  ?  N ( u )  d S

 r S h  E E
 Ω

 u  ?  u  d S  1  r F  E E
 S 0

 F u  ?  n  d S

 ,  (14)

 where the following further simplification was used

 T  * F  5  1 – 2 r F  E E
 S 0

 F u  ? n  d S .  (15)

 It is useful to recall that liquid-filled systems have two families of nodes :  the sloshing
 and the bulging ones (Gupta & Hutchinson 1988) .  Sloshing modes are caused by the
 oscillation of the liquid free surface due to the rigid body movement of the container ;
 these modes are also af fected by the flexibility of the system .  In contrast ,  the bulging
 modes are those in which the amplitude of the wall displacement predominates over
 that of the free surface ;  in this case ,  the tank walls and base oscillate with the liquid .
 Only bulging modes can be studied neglecting free surface waves .

 Obviously we must know the mode shape  u  or we must give  u  a priori  in order to use
 equations (8) ,  (13) and (14) .  The accuracy of the method depends on the accuracy of
 the choice of the wet mode shapes .  In some problems it was proved that the choice of
 wet mode shapes equal to dry mode shapes gives quite good accuracy .  Experiments
 and discussion on this aspect can be found ,  for example ,  in the work of Amabili  et al .
 (1995) ,  Amabili & Kwak (1996) ,  Amabili  et al .  (1996) and Amabili (1996a) .

 3 .  THE RAYLEIGH – RITZ METHOD FOR COUPLED FLUID – STRUCTURE
 SYSTEMS

 A more accurate solution is obtained by using the Rayleigh – Ritz method (Zhu 1995 ;
 Amabili 1996c) .  The mode shape  u  is no longer given  a priori ,  but it is expanded in a
 series by using a finite number of admissible functions  x i  , i  5  1 ,  .  .  .  ,  m ,  and appropriate
 unknown coef ficients  q i :

 u  5  O m
 i 5 1

 q i x i  .  (16)

 The coef ficients  q i   are computed by the eigenvalue problem that is obtained minimizing
 the Rayleigh quotient ,  given by equation (8) ,  with respect to the coef ficients  q i .  As a
 consequence of the inclusion principle ,  the computed eigenvalues approach the actual
 circular frequencies asymptotically and from above ,  while the number  m  of terms
 considered in the series increases ;  at the same time the corresponding eigenvectors
 approach the actual mode shapes .

 The deformation potential of the fluid  F   is also described by the eigenvectors ,  but
 using the appropriate functions  f i  :

 F  5  O m
 i 5 1

 q i f i  .  (17)

 The functions  f i   are unequivocally obtained by the corresponding trial functions  x i   and
 must satisfy both the Helmholtz equation  = 2 f i  5  2 v  2 c  2 2 f i   and the boundary
 conditions on the free surface  S f   of the liquid  g  Û f i  / Û n  5  v  2 f i  ,  at the liquid – structure
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 interface  Û f i  / Û n  5  x i  ?  n ,  and all the other conditions imposed at the fluid boundary .  It
 is clear that both the Helmholtz equation and the free surface condition ,  when free
 surface waves are considered ,  are dependent on the circular frequency  v   of the system ,
 which is unknown before the solution of the eigenvalue problem is obtained .
 Substituting equations (16) and (17) into the Rayleigh quotients ,  equations (8) ,  (13)
 and (14) ,  and then minimizing with respect to the coef ficients  q i  ,  we obtain

 O m
 j 5 1

 ( K i j  2  v  2
 r E i j ) q j  5  0 ,  i  5  1 ,  .  .  .  ,  m ,  (18)

 where [ K i j ] and [ E i j ] are the stif fness and mass matrices ,  respectively ,  and  v r   is the
 estimated  r th circular frequency of the system .  We see that in the Rayleigh quotients
 we must insert an expression of  F   dependent from  v  ,  and therefore both the matrices
 [ K i j ]   and [ E i j ] in equation (18) depend on the circular frequency of the system .  The
 solution of the problem is therefore obtained as a nonlinear eigenvalue problem that
 must be solved by an iterative algorithm .  It could be possible to start the iteration from
 some assumed values of  v  ;  these values can first be computed ,  for example ,  by
 considering the solution of the problem of an incompressible liquid and neglecting the
 free surface waves (when we are interested in bulging modes) .  In fact ,  in this case ,  both
 the fluid deformation potential and boundary conditions are independent of  v  ,  and a
 linear eigenvalue problem is obtained .  In other cases it is useful to start from a very
 low circular frequency ,  lower than that of the fundamental mode of sloshing of the fluid
 considering the structure as rigid .  The nonlinear eigenvalue problem can be written as
 (Schramm & Pilkey 1995)

 u [ K i j ( v  2( s )
 r  )]  2  v  2( s 1 1)

 r  [ E i j ( v  2( s )
 r  )] u  5  0 ,  (19)

 where  v  2( s )
 r    is the computed  r th eigenvalue at step  s .  This means that for each

 eigenvalue  v  2
 r   a sequence of linear eigenvalue problems must be solved .

 3 . 1 .  O VERCOMING THE  N ONLINEAR  E IGENVALUE  P ROBLEM

 When the fluid is incompressible but the free surface waves are retained in the study ,  it
 is possible to overcome the nonlinear eigenvalue problem .  In fact ,  the dimension of the
 problem can be increased utilizing more variables ,  and a linear eigenvalue problem can
 be obtained .  By using the principle of superposition it is possible to write

 F  5  F B  1  F S  5  O m
 i 5 1

 q i f  B i
 1  O m ̃

 i 5 1
 h i f  S i

 ,  (20)

 where  f  B i
   and  f S i

   satisfy the Laplace equation .  In particular ,  the sum  F B   is the
 deformation potential obtained neglecting free surface waves ,  and each term  f  B i

   must
 satisfy the following boundary conditions :

 f  B i
 5  0  on  S f  and  Û f  B i / Û n  5  x i  ?  n   on  S 0 .  (21a , b)

 In particular the coef ficients  q i   in equation (20) are the same as in the Ritz expansion of
 the mode shape ,  equation (17) .  Then the sum  F S   is the deformation potential due to
 sloshing ,  and each term  f  S i

   must satisfy the condition

 Û f  S i / Û n  5  0  on  S 0  .  (22)
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 Moreover ,  the deformation potential must verify the free surface condition

   g
 Û F

 Û z
 5  v  2 F  on  S f  ,  i . e .  g F O m ̃

 i 5 1
 q i

 Û f  B i

 Û z
 1  O m ̃

 i 5 1
 h i

 Û f  S i

 Û z
 G  5  v  2  O m ̃

 i 5 1
 h i f  S i

 on  S f .  (23)

 Equation (23) can be inserted in the eigenvalue problem by increasing its dimension
 from  m  3  m  to ( m  1  m ̃  )  3  ( m  1  m ̃  ) .  Therefore the following linear Galerkin equation is
 obtained

 F  [ K ]
 [ K 1 ]

 [0]
 [ K 2 ]

 G H q
 h
 J  2  v  2

 r F [ M ]  1  [ M a ]
 [0]

 [ M S ]
 [ M 1 ]

 G H q
 h
 J  5  0 ,  (24a)

 where
 q  T  5  h q 1  ,  .  .  .  ,  q m j  and  h T  5  h h 1  ,  .  .  .  ,  h m ̃  j .  (24b , c)

 In equation (24) the stif fness matrix [ K ] and the mass matrix [ M ] are due to the
 structure ,  and the matrix [ M a ] is the added mass matrix due to the kinetic energy of the
 fluid neglecting the free surface waves ,  i . e .  ( T  * F ) no  wave  5  1 – 2 r F  ee S 0

 F B u  ?  n  d S ;  all these
 matrices have dimension  m  3  m .  It is noted that the matrix [ E ] in equations (18 ,  19) is
 given by the sum [ M ]  1  [ M a ] ,  while [ K ] is obviously the same .  The matrix [ M S ] is the
 added mass matrix associated with the reference kinetic energy due to the sloshing of
 the fluid ;  this energy is given by

 ( T  * F ) sloshing  5
 1
 2

 r F  E E
 S 0

 F S  u  ?  n  d S .  (25)

 Matrices [ K 1 ] ,  [ K 2 ] and [ M 1 ] are due to the vectorial form of equation (23) that is
 added to the original problem .

 It is also interesting to note that ,  in many problems ,  the eigenvectors of the  in  y  acuo
 problem can be used as trial functions  x i   in the mode shape expansion ;  this simplifies
 the computation of the maximum potential energy of the structure ,  i . e .  the first integral
 in the numerator of equation (8) .  This energy can be obtained by multiplying the
 reference kinetic energy of each eigenvector of the  in  y  acuo  problem by the
 corresponding eigenvalue  v  2

 i    (the squared circular frequency) of the same problem and
 by the coef ficient  q i  ,  and then adding all the products (Amabili  et al .  1996 ;  Amabili
 1996a) ;  i . e .

 1
 k
 E E
 Ω

 x i  ?  N ( x i )  d S  5  v  2
 i  r S h  E E

 Ω

 x i  ?  x i  d S ,  (26)

 and then
 1
 k
 E E
 Ω

 u  ?  N ( u )  d S  5  r S h  O m
 i 5 1

 v  2
 i  q

 2
 i  E E

 Ω

 x i  ?  x i  d S .  (27)

 In equation (27) we have used the orthogonality of the eigenvectors of the  in  y  acuo
 problem .

 4 .  SUBSTRUCTURE SYNTHESIS

 The analysis of a complex structure can be simplified if it is made up of quite simple
 components (substructures) joined together .  In fact ,  in that case ,  it is possible to use
 the knowledge of the dynamic behavior of the substructures to study the whole
 structure .  In particular ,  the choice of trial functions of each component is simpler than
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 the choice of global trial functions ,  and equation (27) can be used to evaluate the
 potential energy of each component .  A powerful method to synthesize simple
 components and study a structure is the artificial spring method .

 4 . 1 .  T HE  A RTIFICIAL  S PRING  M ETHOD

 The artificial spring method is a modification of the classical Rayleigh – Ritz method to
 synthesize components simplifying the choice of trial functions ;  it can be attributed to
 Yuan & Dickinson (1992a) and Cheng & Nicolas (1992) .

 The Rayleigh – Ritz method was proved to be very ef ficient in studying complex
 structures ,  but in order to obtain correct results the trial functions must satisfy all the
 geometrical boundary conditions .  Even if the extended Rayleigh – Ritz method (Petyt
 1971) is utilized ,  trial functions must satisfy geometrical boundary conditions of the
 unconstrained structure ,  and the sum of the series of functions must satisfy the
 additional constraints .  When the Rayleigh – Ritz method is applied to a structure
 obtained by joining some components together ,  the boundary conditions require the
 continuity of translational and rotational displacements between all the rigid junctions
 of the substructures .  This condition gives many problems in the choice of the correct
 trial functions to use for each single component .  The use of artificial springs at the
 junctions allows us to overcome this dif ficulty .  In particular ,  the joints between the
 components of the structure are substituted by translational and rotational artificial
 springs (see Figure 2) that are distributed along the whole joint length or area .
 Obviously ,  each degree of freedom involved in the joint must be simulated by a
 distributed spring .  Then the spring stif fness is chosen to be very high with respect to the
 structure stif fness ,  to simulate a rigid junction in numerical computations .  The
 maximum potential energy  V S j

   stored by the artificial springs simulating the joint  j  of
 the structure can be written as

 V S j
 5

 1
 2
 E
 l j

 k j d j  d l ,  (28)

 where  k j   is the stif fness of the translational or rotational artificial springs ,   d j   is the
 relative displacement or rotation between the two components involved in the joint ,
 and  l j   is the length or area of the joint  j .  The total potential energy stored by the
 artificial springs is obviously the sum of the energies stored in all the joints of the
 structure ,  and the double of this energy is included in the numerator of the Rayleigh
 quotient when the artificial spring method is applied .

 The potential energy stored by the springs replaces the continuity condition required

Original structure Structure synthesized
by using artificial

springs

 Figure 2 .  Schematic representation of substructure synthesis .
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 by the classical Rayleigh – Ritz method if the artificial springs are not introduced .
 Therefore ,  the choice of the trial functions is simplified ;  in particular ,  one must choose
 trial functions that allow displacement and rotation of all the springs involved in the
 junctions and that satisfy the geometrical boundary conditions at the non-connected
 regions .

 4 . 2 .  C OUPLING  D UE TO THE  F LUID

 In Section 4 . 1 we have described a method for simplifying the analysis of a structure
 through a technique for synthesizing the components .  Now we propose the application
 of the Rayleigh – Ritz method for coupled fluid – structure systems in the case of
 substructuring ,  and in particular by using the artificial spring method .

 Let us consider a structure that we choose to divide into  l  components in the study ;
 we assume that the first  p  components of the structure are in contact with the simply
 connected volume  V ,  filled with an incompressible and inviscid fluid .  The surface  S 0

 wetted by the fluid is given by the sum of the contributions of each component ;
 therefore ,   S 0  5  S 1  1  S 2  1  .  .  .  1  S p  ,  where  S j   is the wet surface of component  j .  The
 vibration displacement of each component of the structure is  u j  , j  5  1 ,  .  .  .  ,  l .  By using
 the admissible functions  x i j  , i  5  1 ,  .  .  .  ,  m ,  of the component  j  we can write

 u j  5  O m
 i 5 1

 q i j x i j  ,  (29)

 where  u j   and  x i j   are defined in the component  j .  We associate with any admissible
 function  x i j   the corresponding component  f i j   of the deformation potential of the fluid ,
 defined in the whole fluid volume  V .  Each function  f i j   must satisfy the Laplace
 equation and all the boundary conditions ;  in this case the conditions of contact are :
 Û f j i  / Û n  5  x i j  ?  n  on  S j   and  Û f i j  / Û n  5  0 on  S 0  2  S j  .  Therefore  f i j   is associated with  x i j  ,
 considering the structure flexible in  S j   and rigid otherwise .  The deformation potential  F
 is given by

 F  5  O p
 j 5 1

 F j  ,  (30)

 where  F j   is the contribution to  F   given by the vibration of the component  j .  Therefore ,
 we have

 F j  5  O m
 i 5 1

 q i j f i j  .  (31)

 The reference kinetic energy of the fluid ,  equation (15) ,  is now given by

 T  * F  5  1 – 2 r F  O p
 i 5 1

 E E
 S i

 O p
 j 5 1

 F j u i  ?  n  d S .  (32)

 Examining equation (32) ,  we see that there are non-zero contributions also when  i  ?  j .
 In conclusion ,  there is a dynamic coupling ,  due to the fluid ,  among the components of
 the structure that are in contact with the same fluid volume ,  and not only junctions in
 the structure .  Similar relationships are obtained when studying a compressible fluid
 while retaining the possibility of free surface waves .



 M .  AMABILI 516

 5 .  APPLICATION TO A PLATE-ENDED CIRCULAR CYLINDRICAL TANK

 The proposed method is applied to the study of a storage tank filled with an inviscid
 and incompressible liquid (water) having a free surface normal to the tank axis .

 The tank is modeled by a simply supported circular cylindrical shell connected to a
 simply supported circular plate by an artificial rotational distributed spring (Figure 3)
 that is assumed to be very rigid .  This model is quite realistic because the connection
 between the plate and the shell gives a reciprocal constraint that can be assumed as a
 simple support .  In many applications the top of the tank is closed by a thin diaphragm
 or by a ring that constrains the shell displacements similarly to a simple support ;  only
 for the purposes of describing correctly beam-like modes of the tank should a free edge
 be considered as the top .

 When a plate is joined to a circular cylindrical shell ,  in general three displacements
 and two slope connections could be considered ,  according to classical thin-shell theory .
 However ,  the full treatment of using five connections is not necessary if one
 investigates only lower modes of the system .  For these modes the plate can be assumed
 inelastic in its plane ,  and hence to admit only transverse displacements .  Moreover ,
 influences of connection deflections in the tangential planes of the shell can be
 neglected with respect to transverse amplitudes .  Therefore ,  only the radial slope at the
 plate boundary can be considered coupled to the axial slope of the shell at the bottom
 end .

 In this application only the bulging modes of the structure are investigated and the
 free surface waves are neglected ;  the solution is obtained as a linear eigenvalue
 problem by using an artificial spring in conjunction with the Rayleigh – Ritz method .

 A cylindrical polar co-ordinate system ( O ;  r ,  θ  ,  x ) is introduced ,  with the origin  O  at
 the center of the circular bottom plate .  Due to the axial symmetry of the structure ,  only
 the modes of the shell and the plate with the same number  n  of nodal diameters are
 coupled .  Both the axisymmetric vibrations ( n  5  0) and asymmetric vibrations ( n  .  0)
 can be investigated .  Besides ,  it is interesting to note that ,  due to axial symmetry ,  for

Free surface

Component 1:
Cylindrical shell

Component 2:
Circular plate

Oa

θ

H

L

x

 Figure 3 .  The model used to study the storage tank .
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 each asymmetric mode there exists a second mode having the same frequency and
 mode shape ,  but angularly rotated by  π  / 2 n .

 The Rayleigh – Ritz method is applied to find the natural modes of the circular
 cylindrical tank of radius  a  and height  L .  The radial displacement  w  of the shell wall
 (Figure 3) can be given by the following expression (Amabili 1997) :

 w ( x ,  θ  )  5  cos( n θ  )  O N 1

 s 5 1
 q s B s  sin S s π

 x
 L
 D  ,  (33)

 where  n  is the number of nodal diameters ,   q S   are the Ritz coef ficients ,   B S   are constants
 depending on the normalization criterion used ,  and  N 1  is the number of terms used in
 the expansion .  The eigenvectors of the empty simply supported shell are used as
 admissible functions .

 The transverse displacement ,   w P  ,  of the plate can be given as

 w p ( r ,  θ  )  5  cos( n θ  )  O N 2

 i 5 0
 q ̃  i F A i n J n S l i n r

 a
 D  1  C i n I n S l i n r

 a
 D G  ,  (34)

 where  n  and  i  are the number of nodal diameters and circles ,  respectively ,   a  is the plate
 radius ,   q ̃  i   are the Ritz coef ficients ,  and  l i n   is the frequency parameter that is related to
 the natural frequency of the plate ;  J i   and I i   are the Bessel function and modified Bessel
 function of order  i ,  respectively ,  and  N 2  is the number of terms used in the expansion .
 The mode shapes with an even number  n  of nodal diameters are symmetric with
 respect to the longitudinal axis ,  whereas those with an odd number  n  are antisymmet-
 ric .  Mathematical details are given in Amabili (1997) .

 The numerical solution to the eigenvalue problem is obtained by using the
 Mathematica  computer program (Wolfram 1991) .  Twelve shell modes and twelve plate
 modes are considered in the Rayleigh – Ritz expansion .  The study is addressed to tanks
 partially filled with water ,  having  r F  5  1000  kg  m 2 3 .  In the case studied ,  both the shell
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 Figure 4 .  Ef fect of the spring stif fness on the natural frequencies ,  in Hz ,  of the first four modes with four
 nodal diameters ;  ( h ) S1  5  first shell-dominant mode ;  ( e ) S2  5  second shell-dominant mode ;  ( n ) S3  5  third

 shell-dominant mode ;  ( j ) P1  5  first plate-dominant mode .
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 and the plate are assumed to be made of steel with the following material properties :
 Young’s modulus  E  5  206  3  10 9  N  m 2 2 ,  mass density  r S  5  7800  kg  m 2 3  and Poisson
 ratio  …  5  0 ? 3 .  The dimensions are :  radius  a  5  0 ? 175  m ,  shell length  L  5  0 ? 6  m ,  shell
 thickness  h S  5  1  mm and plate thickness  h P  5  2  mm .  The plate and the shell are
 considered coupled together by a spring with infinite stif fness at the joint .  For infinity ,
 one in fact takes a large enough quantity in the calculations .  In practice ,  one sometimes
 considers a trial value of the spring stif fness and then changes it until one obtains
 eigenvalues that are not af fected by an increment in the stif fness value .  However ,  one
 can give directly a stif fness value much larger than the plate and shell edge stif fness .  In
 the present case the stif fness value of 10 6  N  m / m of the rotational spring connecting
 plate and shell was used to simulate an infinite stif fness in computations .  The ef fect of
 the spring stif fness on natural frequencies is shown in Figure 4 .

 The tank is considered to be completely filled with water to a level of  H  5  0 ? 6  m .  The
 first four mode shapes having  n  5  2 nodal diameters are given in Figure 5 .  Mode shapes
 are plotted in the tank cross-section defined by  θ  5  0 and  θ  5  π .  Obviously ,  for  n  5  2
 we have symmetric mode shapes in this section ;  the first (Figure 5a) and the third
 (Figure 5c) modes are shell-dominant (shell displacement larger than plate displace-
 ment) ;  the second (Figure 5b) and fourth (Figure 5d) are plate-dominant .  Therefore ,  it

(a)

210.8 Hz

(b)

309.1 Hz

(c)

609.6 Hz

(d)

886.9 Hz

 Figure 5 .  First four modes having  n  5  2 nodal diameters and their natural frequencies .  The corresponding
 in  y  acuo  natural frequencies are :  (a) 719 ? 9  Hz ;  (b) 576 ? 1  Hz ;  (c) 1943 ? 9  Hz ;  (d) 1400 ? 4  Hz .
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(a)

134 Hz

(b)

435.1 Hz

(c)

495.8 Hz

(d)

779.9 Hz

 Figure 6 .  First four modes having  n  5  3 nodal diameters and their natural frequencies .  The corresponding
 in  y  acuo  natural frequencies are :  (a) 384 ? 5  Hz ;  (b) 1208 ? 8  Hz ;  (c) 839 ? 7  Hz ;  (d) 2062 ? 4  Hz .

 is useful to introduce the symbols S1 and S2 to indicate the first and second
 shell-dominant modes ;  similarly ,  P1 and P2 are used for the first and second
 plate-dominant modes .  In the figure are reported also the natural frequencies .  The
 natural frequencies of the corresponding modes in vacuum are given in the caption in
 order to evaluate the ef fect of water ;  obviously ,  mode shapes are also changed by the
 presence of water inside the tank .  The first four mode shapes having  n  5  3 nodal
 diameters are presented in Figure 6 ,  while those having  n  5  4 are given in Figure 7 ;  for
 n  5  3   we have antisymmetric mode shapes in the cross-section with coordinates  θ  5  0
 and  θ  5  π  ,  while for  n  5  4 we have symmetric shapes .  Natural frequencies of modes
 with  n  5  4 nodal diameters are plotted in Figure 8 for dif ferent thicknesses of the
 bottom plate (all the other dimensions are unchanged) .  Plate-dominant modes are
 obviously largely af fected by the increasing thickness .

 Table 1 shows the convergence of the natural frequencies when the number of terms
 in the expansion is increased .  It is interesting to see that the plate-dominant modes
 display a slower convergence rate in this case .  In contrast ,  very few terms are necessary
 to assure a good estimation of shell-dominant modes .

 Lastly ,  in order to check the accuracy of the artificial spring method ,  numerical
 results obtained by using the present approach were compared to the data presented
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(a)

102.5 Hz

(b)

321.8 Hz

(c)

608.5 Hz

(d)

695.8 Hz

 Figure 7 .  First four modes having  n  5  4 nodal diameters and their natural frequencies .  The corresponding
 in  y  acuo  natural frequencies are :  (a) 261 ? 7  Hz ;  (b) 799 ? 6  Hz ;  (c) 1477  Hz ;  (d) 1138 ? 8  Hz .

 by Huang & Soedel (1993) for an empty plate-ended circular cylindrical shell .  Both the
 shell and the plate are made of steel with the following material properties :
 E  5  206  GPa ,   r S  5  r P  5  7850  m 2 3  and  …  5  0 ? 3 .  The dimensions are :   a  5  0 ? 1  m ,   L  5
 0 ? 2  m ,   h S  5  h P  5  2  mm .  The comparison is shown in Table 2 for modes having  n  5  5
 nodal diameters .  A very good agreement between the circualr frequencies given by
 Huang & Soedel (1993) ,  obtained by using the receptance method ,  and the present
 results were found .

 6 .  CONCLUSIONS

 The artificial spring method has many advantages in the study of quite complex
 structures ;  in fact ,  admissible functions need not satisfy continuity conditions at the
 junctions .  It was shown that this technique is appropriate for the study of fluid –
 structure interaction systems ,  also when the fluid has a free surface .  The application to
 a circular cylindrical tank with a vertical axis ,  composed of two substructures joined by
 the relative rotation ,  tests the ef fectiveness of the method .  Rigid junctions are
 simulated by springs of infinite stif fness .  For infinity ,  one in fact takes a large enough
 quantity in the calculations .
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 Figure 8 .  Natural frequencies of the mode shapes with  n  5  4 nodal diameters versus thickness of the
 bottom plate .  ( h ) S1 ;  ( e ) S2 ;  ( j ) P1 ;  ( r ) P2 .

 T ABLE  1
 Natural frequencies [Hz] of the first five modes having  n  5  4 nodal diameters of
 the tank studied ,  obtained by using a dif ferent number  N 1  5  N 2  of terms in the

 Rayleigh – Ritz expansions of  w  and  w P

 Natural frequency (Hz)

 N 1  5  N 2  Mode S1  Mode S2  Mode S3  Mode P1  Mode S4

 2
 6

 10
 14

 104
 103
 102 ? 7
 102 ? 5

 323 ? 4
 322 ? 3
 322
 321 ? 8

 —
 608 ? 6
 608 ? 5
 608 ? 5

 875
 747 ? 7
 717 ? 2
 695 ? 8

 —
 913 ? 1
 910 ? 7
 909 ? 4

 T ABLE  2
 Circular frequencies [rad / s] of the plate-ended circular cylindrical shell studied in the

 paper of Huang & Soedel (1993) ;  modes with  n  5  5 nodal diameters are considered

 Mode
 Present
 study

 Huang
 &

 Soedel (1993)  Dif ference (%)

 First
 Second
 Third
 Fourth
 Fifth
 Sixth

 9297
 17  695
 26  296
 28  674
 37  225
 45  127

 9293
 17  696
 25  913
 28  328
 37  161
 45  158

 0 ? 4
 0 ? 006
 1 ? 5
 1 ? 2
 0 ? 2
 0 ? 07
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 The Rayleigh – Ritz method applied together with artificial springs is modified in
 order to obtain directly the fluid deformation potential ,  and is based on the Rayleigh
 quotient for coupled fluid – structure systems ;  dif ferent expressions of the quotient are
 given for various applications .

 In the case when the ef fect of the free surface waves is retained in the study ,  the
 problem can be reduced to a linear eigenvalue problem by increasing the dimension of
 the stif fness and mass matrices .

 Substructuring applied in conjunction with the Rayleigh – Ritz method and the
 artificial spring technique is a powerful method for the study of quite complex
 fluid – structure systems ,  as an alternative to the more computationally onerous finite
 element method (FEM) and boundary element method (BEM) ;  moreover ,  it can also
 be used as a benchmark for commercial FEM and BEM codes .
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